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An Approximate Calculation of Attachment Energies for Ionic Crystals

By P. HARTMAN

Kristallografisch Instituut der Rijksuniversiteit, Melkweg 1, Groningen, Netherlands

(Recetved 16 January 1956)

Some formulas for an approximate calculation of electrostatic potentials at the surface of ionic
crystals are given, based on previous work of Madelung and Kleber. It is concluded that for an
infinite crystal the value of this potential is infinite when, parallel to the crystal face, layers of
positive ions alternate with layers of negative ions. However, the attachment energy of neutral

molecules for such faces is finite.

The formulas are applied to sphalerite to calculate the attachment energies of molecules ZnS on
(111), (110) and (001). These energies, expressed in units e?/a (where a is the unit cell edge) are:
E,,, = —2-583; B, = —2:711 and E,, = —6-189.

Introduction

Recently, the study of the relations between crystal
structure and crystal morphology lead to the working
hypothesis that the morphological importance of a
crystal face decreases with increasing attachment
energy (Hartman & Perdok, 1955). The attachment
energy was defined as the bond energy released when
one building unit is attached to the surface of the
crystal face concerned. With ionic crystals this at-
tachment energy can be calculated if the ions are con-
sidered as point charges. To this end the electrostatic
potential at the point of attachment of the ion should
be known. It can be calculated conveniently when the
structure is divided into periodic bond chains with
stoichiometric composition. First, the electrostatic
potential of one chain is calculated; then the potential
of a layer of chains parallel to the crystal face; and
finally the potentials of all layers are added together
to obtain the potential of the crystal face.

(a) Electrostatic potential of a chain A+B-

Fig. 1(a) represents an infinite chain of ions with
period p and total charge zero. The x axis is taken
parallel to the chain direction; in general it lies outside
the plane of the ion chain. All positive ions lie at the
same distance y; and all negative ions at the same
distance y_ from this axis. The electrostatic potential
in the point P(0, 0) can be given by applying twice
the formula of Madelung (1918) for the potential of
a row of equally charged ions. We then find:
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In this formula K, represents the Hankel cylinder
function of order zero. This expression for V¥, has been
shown by Kleber (1939) to be convergent.

(b) Electrostatic potential of a layer of chains of
composition A+B-

Fig. 1(d) represents a layer, parallel to a crystal face,
consisting of parallel chains seen end on. The electro-
static potential of this layer can be found by adding
together the potentials of all chains in the layer. Thus,
if V, is the electrostatic potential in point P with
regard to the nth chain,
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Yoy and z,, being the coordinates of the positive ions
with respect to the point P as origin; similarly y,,_
and z,_ are the coordinates of the negative ions.
The term 4, in expression (3) decreases rapidly with
increasing y, so that it need be calculated only for the
first few chains. In order to find a convenient ex-
pression for the term B,, we put (see Fig. 1()):

Yny = {(ng—u+h cos 82+ (v—Ph sin 6)2}}
an
Yn— = {(ng—u—h cos 8)*+ (v+h sin 6)2}#
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Fig. 1. (a) Infinite chain of ions, with coordinates used in the calculation of the electrostatic potential in P. The coordinates
y4 and y_ are measured radially out from the x axis, which in general does not lie in the plane of the chain.
(b) Layer, consisting of infinite chains of ions seen end on, with coordinates used in the calculation of the electrostatic
potential in the point P. The z axis of Fig. 1(a) is perpendicular to the plane of the drawing and goes through P.

where 6 is the angle between the positive % axis and
the direction from the origin towards the positive ion.

Taking together the terms for +n and —n, we ob-
tain:
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When # is large enough, an approximate power series
of n can be used. If we put

_an®+b

~ niten?id’
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then
B,+B_, = tanh™1z, ~ an~2+n"%b—ac)
+n-%{c(ac—b)—ad}+n-8{(b—ac)(c*~d)+acd}+....(7)

The summation in (3) is then readily done, taking into
account that
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The calculation of V, is thus carried out according
to the formula
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(c) Electrostatic potential of a crystal face

To obtain this potential the potentials of all layers
must be calculated and then added together. The
distance between two consecutive layers being denoted
by d, the coordinate v can be put into the form

v = vy+md, where m is an integral number.

For a certain value of n, the quantity B,+B_, can
be developed into a power series of m:

BB, - 4h sin
md

+terms with higher negative powers of m.

The first term is independent of the coordinates of
the point P and when m tends to infinity it causes the
potential of the face to be infinite, as the first term
of the sum
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becomes infinite.

A finite attachment energy results only when:
(1)  =0; (2) neutral molecules attach themselves
to the crystal face; (3) the dimensions of the crystal
remain finite, but the potential is then very high.

(d) Electrostatic potential in the site of an ion
in a layer

For the calculation of the lattice energy, the potential
in the site of an ion in a layer must be known. Suppose
this site coincides with a positive ion (see Fig. 1(5)),
then in this case u=hcosd, v=hsiné, ,=0, y,=0.
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Fig. 2. Projection of the sphalerite structure on (110). Five layers parallel to (110) are shown and for each layer the coor-
dinate axes # and v are drawn. These are also drawn for the zero layer of (111) which runs from the top right corner to
the bottom left corner.

Table 1. Calculation of the attachment energy on (110) of sphalerite

1st layer 2nd layer 3rd layer 4th layer
q a a a a
h al8 af8 af8 al8
sin 0 0 0 0 0
cos —1 —1 —1 —1
% 3a(8 —al8 3a/8 —af8
v tay2 tay2 jay2 ay2
A_y Negligible 47 x 4-0-00003 Negligible Negligible
4, 3 x —0:01001 27 X +0-00097 37t X —0-00002 Negligible
Aq inx —0-00163 37 X +0-00001 3 X —0-00001 Negligible
B, —0-34657 -+0-05889 —0-07330 +0-01538
B;+B_, +0-13219 —0-01319 —0-01150 +0-00711
B,+B_, +0:04406 —0-01082 +0-02007 —0-00343
B;+B_, -+0-02030 —0-00590 +0-01446 —0-00361
B,+B_, — — +0-00956 —0-00270
B;+B_g — — — —0-00197
By+B_g — — — —0-00147
o0 [o.0) e o) [o0)
Rest 3 (BatB_y) 3 (Bt Bon) 3 (Byt By 3 (Ba+-B_n)
= +0-05290 = —0-01707 = 40-03943 = —0-00915
Viager 2 x —0-26738 ¢ x +0-03017 2 x —0:00275 % X +0-00032
p P p I4

Expression (1) now becomes (cf. Madelung, 1918;
Kleber, 1939)
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(e) Example: sphalerite

The structure can be divided into an infinite set of
periodic bond chains in the direction [110] and of
composition ZnS. Fig. 2 gives a projection of the
structure on (110); the chains are seen end-on. The
attachment energies of ZnS molecules (treated as a
pair of ions) on the faces (110), (111) and (001) will
now be calculated.

() Attachment energy on (110)

The electrostatic potential in the site of the Zn ion
indicated by the single arrow (Fig.2) is calculated,
assuming for the present the charges of the ions to be
+1 and —1.

The period of the chains is p = 3a)/2, where a is
the unit-cell edge. For the term A4, of the nearest
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chain in the first layer we find, with y, = 1a)6,
x, = }p, y_ = }ay3 and x_ = 0, applying formula (2):
Ay = —3nx0-01001. The factor 47 comes in here
because the Funktionentafeln of Jahnke & Emde
(1933) have tabulated iH®(ix) = (2/m) Ko(x).

The values of the other A-terms and of the B-terms
have been sumrnarized in Table 1, together with the
values for the other layers.

The rest-terms in this table have been calculated
from formula (7), beginning with the term that showed
no difference whether calculated exactly (equation (5))
or approximately (equation (7)). The potentials of the
layers have been calculated by applying formula (8).

Now V,50 = (¢/p) x —0-23964. The electrostatic po-
tential in the site of the S-ion is the same, so that,
for doubly charged ions the attachment energy per
molecule is found to be:

8e2
B, = —p—x —0-23964 = —2-711e?/a.

(B) Attachment energy on other faces

In order to find the attachment energy for the other
faces, the lattice energy is calculated. This involves the
calculation of the electrostatic potential in the site of
an ion in the zero layer of (110). For the positive ion
y.=0, 2, =0, y_=1%a, z_=13}p, u= —a/8 and
v = 0. Equations (la), (4), (6a), (7) and (8a) then give:

v, = £x —~198842;
P

A_; = 37mx +0-00004; A; = $7rx +0-00043;
B,+B_, = —0-06454; B,+B_, = —0-01575;

3 (B,+B_,) = —0-02472 .

3
From this it follows that V, = j—g x —2:19549.
The lattice energy is then:

Egs = 8e(3V o+ Vyy) = —15131e?fa .

The literature value is —15-13168¢%/a (cf. Pauling
(1948, p. 338); the value quoted there assumes single-
charged ions Zn*+S-).

(y) Attachment energy of a molecule on (111)

The attachment energy of a molecule on the (111)
face can now be found by subtracting half the electro-
static potential of a molecule in the zero layer of (111)
from the lattice energy (see Fig. 2):

Em = EZns—%Eo(lll) .

For the positive ion indicated by the double arrow
g = }1a)6, h = a/8, sin 6 = 1/)/3 and cos § = })/6.

Equations (1a), (4), (6a), (5), (7) and (8a) then give:

V)= % x —1-08842;

A_p, = 3zx +0-00001; A_; = $nx —0-00163;
A; = 3x —0-01001; 4, = $zx +0-00003;
B,+B_; = —0-04350; B,+B_, = —0-01319;

oo
3 (B,+B_,) = —002173.
3

These values give V,(111) = Ep x —2:21814, from
which E,,, = —2-583¢?/a.

(6) Attachment energy of a molecule on (001)

Similarly the attachment energy of a molecule on
the (001) face can be calculated by:

Eom = EZns“%Eo(OOl) .

For the positive ion ¢ = $ay2, h = a/8, sind = 1 and
cos § = 0.

vy =% —198842;
P

A, = A, = lwx +0-00097;

By+B_, = +0-11778; B,+B_, = +0-03077;
B;+B_; = 40-01379;

S (B,+B_,) = +003542;
4

V,(001) = :—o x —1-58071 ,
from which Eyy; = —6-189¢%/a.

(e) Conclusion

Two assumptions have been made: (1) the sphalerite
structure can be treated as a purely ionic structure,
(2) the building units in the crystallization process are
ion pairs ZnS. The attachment energies are found
to be:

E,., = ~2583; E,, = —2711; By, = —6:189¢%a.
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