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An Approximate Calculation of Attachment Energies for Ionic Crystals 
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Some formulas for an approximate calculation of electrostatic potentials at the surface of ionic 
crystals are given, based on previous work of l~Iadelung and Kleber. I t  is concluded that for an 
infinite crystal the value of this potential is infinite when, parallel to the crystal face, layers of 
positive ions alternate with layers of negative ions. However, the attachment energy of neutral 
molecules for such faces is finite. 

The formulas are applied to sphalerite to calculate the attachment energies of molecules ZnS on 
(111), (110) and (001). These energies, expressed in units e2/a (where a is the unit cell edge) are: 
Enl  = --2"583; En0 = --2-711 and E001 = --6.189. 

Introduction 
Recently, the s tudy of the relations between crystal 

structure and crystal morphology lead to the working 
hypothesis tha t  the morphological importance of a 
crystal face decreases with increasing a t tachment  
energy ( t ta r tman & Perdok, 1955). The a t tachment  
energy was defined as the bond energy released when 
one building unit is at tached to the surface of the 
crystal face concerned. With  ionic crystals this at- 
tachment  energy can be calculated if the ions are con- 
sidered as point charges. To this end the electrostatic 
potential at the point of a t tachment  of the ion should 
be known. I t  can be calculated conveniently when the 
structure is divided into periodic bond chains with 
stoichiometric composition. First,  the electrostatic 
potential  of one chain is calculated; then the potential 
of a layer of chains parallel to the crystal face; and 
finally the potentials of all layers are added together 
to obtain the potential  of the crystal face. 

(a)  Electrostat ic  potential  of a chain  A + B -  

Fig. l(a) represents an infinite chain of ions with 
period p and total  charge zero. The x axis is taken 
parallel to the chain direction; in general it lies outside 
the plane of the ion chain. All positive ions lie at the 
same distance y+ and all negative ions at  the same 
distance y_ from this axis. The electrostatic potential 
in the point P(0, 0) can be given by applying twice 
the formula of Madelung (1918) for the potential of 
a row of equally charged ions. We then find: 

4 ~  

- z K0(2  Y-  2.1z_ 2, y_ T +-p v+-' 
o r  

4e A 2e v 0 = ~  0+~B0. 

(1) 

(2) 

In  this formula K o represents the Hankel cylinder 
function of order zero. This expression for V 0 has been 
shown by Kleber (1939) to be convergent. 

(b) Electrostat ic  potential  of a layer of chains of 
composition A+B-  

Fig. l(b) represents a layer, parallel to a crystal face, 
consisting of parallel chains seen end on. The electro- 
static potential of this layer can be found by adding 
together the potentials of all chains in the layer. Thus, 
if Vn is the electrostatic potential in point P with 
regard to the nth chain, 

+ c o  

V1 = Z Vn, 
- - c o  

or substi tuting (2), 

V I =  

where 

An = ~ K o cos 
l = 1 \ - - ~ /  

Ko (2xdyn- I (2:dxn- I - -  C O S  

l=l \ P / \ P / 

4e +co 2e +co 
- -  ~ An + - -  ~" Bn, (3) 

and 

(4) 

Bn = In Yn-, 
Yn+ 

y,+ and xn+ being the coordinates of the positive ions 
with respect to the point P as origin; similarly yn_ 
and x n_ are the coordinates of the negative ions. 

The term An in expression (3) decreases rapidly with 
increasing y, so tha t  it need be calculated only for the 
first few chains. In  order to find a convenient ex- 
pression for the term Bn, we put  (see Fig. l(b)): 

Yn+ = {(nq-u+h cos ~)2+(v-h sin ~)~}½ 
and 

y,,_ = { ( n q - u - h  cos e$)~+(v+h sin ~)2}½, 
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Fig. 1. (a) In f in i t e  cha in  of ions, wi th  coordina tes  used  in the  calculat ion of the  electrostat ic  potent ia l  in P .  The  coord ina tes  

y+ and  y_  are m e a s u r e d  radial ly  out  f rom the  x axis, which  in general  does no t  lie in the  plane of the  chain.  
(b) Layer ,  consist ing of infinite chains of ions seen end on, wi th  coordinates  used  in the  calcula t ion of the  e lect ros ta t ic  

potent ia l  in the  point  P .  The x axis of Fig. l(a) is perpendicular  to the  plane of the  drawing  and goes th rough  P .  

where 5 is the  angle between the  positive u axis and 
the  direction f rom the origin towards  the positive ion. 

Taking together  the  terms for + n  and - n ,  we ob- 
t a in :  

Bn+B_,~ = ½ In 1 + z ,  = tarda_lz" (5) 
l_Zn 

with 
4n2q2(vh sin 5-uh cos 5) 

+4(u~+v2+hg)(vh sin 5+uh cos 5) (6) Zn = nlq4+2n2q2(vU-u2+h 2 sin 2 5 - h  2 cos 2 5) 

+(u2+vU+hu)2+4(vh sin 5+uh cos 5) 2 

When  n is large enough, an approx imate  power series 
of n can be used. If  we pu t  

ang+b 
Zn na+cn2+d ' 

then  

Bn+B_,~ = tanh- lzn  ~ an-2+n-4(b-ac) 
+n-e{c(ac-b)-ad}+n-S{(b-ac)(c2-d)+acd}+ . . . .  (7) 

The summat ion  in (3) is then  readily done, taking into 
account  t h a t  

co ~7~2 co :7~4 
2 : n - 2  = _ .  ~ y n - 4 = _ _ .  
1 6 '  1 90 '  

~ T t  -6 = 
1 

~6 co ~8 
• ~ n  - 8 -  

9 4 5 '  9450" 

The calculation of V 1 is thus  carried out according 
to the  formula  

4e +co 2e 2e 
V1 = - -  Z An+  B ° +  "~1 (Bn+B-n)  " (8) 

(c) Electrostat ic  potential  of a crystal  face 

To obtain this potential  the  potent ials  of all layers 
must  be calculated and  then added together.  The 
distance between two consecutive layers  being denoted 
by  d, the  coordinate v can be pu t  into the  form 

v = v0+md, where m is an  integral  number .  

For  a certain value of n, the  quan t i t y  B,~+B_n can 
be developed into a power series of m:  

Bn + B_,, 
4h sin 5 

md 
+ t e r m s  with higher negat ive  powers of m. 

The first t e rm is independent  of the  coordinates of 
the  point  P and when m tends  to inf ini ty  i t  causes the  
potential  of the face to be infinite, as the  first  t e rm 
of the sum 

co 4h sin 5 ~ 1 
_,~ (B,,+B_n) - - - + . . .  

m=~ d m=~ m 

becomes infinite. 
A finite a t t achmen t  energy results only when:  

(1) ~ = 0; (2) neutral molecules attach themselves 
to the  crystal  face; (3) the  dimensions of the  crystal  
remain  finite, but  the potent ia l  is then  very  high. 

(d) Electrostat ic  potential  in the site of an ion 
in a layer 

For  the  calculation of the  la t t ice  energy,  the  potent ia l  
in the site of an ion in a layer  mus t  be known. Suppose 
this site coincides with a positive ion (see Fig. l(b)), 
then  in this case u=heosS ,  v=hsinS, x+=0,  y+=O. 
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Fig .  2. P r o j e c t i o n  of  t h e  spha l e r i t e  s t r u c t u r e  on  ( i l 0 ) .  F i v e  l aye r s  pa ra l l e l  to  (110) are  s h o w n  a n d  fo r  e a c h  l a y e r  t h e  coor -  
d i n a t e  axes  u a n d  v a re  d r a w n .  T h e s e  are  also d r a w n  for  t be  zero l a y e r  of ( I l l )  w h i c h  r u n s  f r o m  the  t o p  r i g h t  c o r n e r  t o  
t he  b o t t o m  left  co rne r .  

Table 1. Calculation of the attachment energy on (110) of sphalerite 

1st  l a y e r  2 n d  l a y e r  3rd  l a y e r  4 t h  l a y e r  

q a a a a 

h a18 a]8 a18 a]8 
sin ~ 0 0 0 0 
cos ~ - - 1  - - 1  - - 1  - - 1  
u 3a[8 -- a[8 3a]8 -- a[8 
v ~al/2 ~al/2 t a l / 2  al /2  
A 1  Negl ig ib le  ½z × + 0 . 0 0 0 0 3  Negl ig ib le  Negl ig ib le  
A 0 ½z × - -  0.01001 ½z × + 0.00097 ½z × - -  0 .00002 Negl ig ib le  
A 1 ½~ × - - 0 . 0 0 1 6 3  ½z × + 0-00001 ½z × - - 0 . 0 0 0 0 1  Negl ig ib le  
B 0 - -  0 .34657 + 0.05889 - - 0 - 0 7 3 3 0  + 0 .01538 
B I + B  1 + 0 . 1 3 2 1 9  - - 0 . 0 1 3 1 9  - - 0 . 0 1 1 5 0  + 0 . 0 0 7 1 1  
B 2 + B _  2 + 0 .04406 - -  0.01082 + 0.02007 - -  0 .00343 
B 3 + B _  a + 0 .02030 -- 0 .00590 + 0 .01446 - -  0.00361 
B 4 + B _  a - -  - -  + 0 .00956 - -  0 .00270 
B 5 + B _  5 . . . .  0 .00197 
B e + B _  6 . . . .  0.00147 

CO CO CO CO 

R e s t  ~, ( Bn + B_n) ~.~ (Bn + B_n) ~," (Bn + B_n) ~ (Bn + B_n) 
4 4 5 7 

-~ + 0 " 0 5 2 9 0  = - -0"01707 ~ + 0 " 0 3 9 4 3  - -  - - 0 . 0 0 9 1 5  
e e e e 

Vlayer - × - -0"26738  - × + 0 " 0 3 0 1 7  - × - - 0 : 0 0 2 7 5  - × + 0 " 0 0 0 3 2  
P P P P 

Expression (1) now becomes (cf. Madelung, 1918; 
Kleber, 1939) 

Vo = ~ 1.1544 3 -  4 K o 

×cos - 2 1 n  , (la) 
\ P ) 

and (6) reduces to 

4n2q2h 2 (sin e ~ -  cos 2 ~ ) + 8h a 
(6a) 

z n = naq~+4n2q~h2 (sin ~. ~ - cos  ~. ~}) +8h / , 

while (8) changes into 

, 4e CO 2 e ~  ( B n + B _ n ) .  (8a) 

(e) E x a m p l e :  spha le r i t e  

The structure can be divided into an infinite set of 
periodic bond chains in the direction [110] and of 
composition ZnS. Fig. 2 gives a projection of the 
structure on (110); the chains are seen end-on. The 
a t tachment  energies of ZnS molecules (treated as a 
pair of ions) on the faces (110), (111) and (001) will 
now be calculated. 

(o~) At tachment  energy on (110) 
The electrostatic potential in the site of the Zn ion 

indicated by the single arrow (Fig. 2) is calculated, 
assuming for the present the charges of the ions to be 
+1 and - 1 .  

The period of the chains is p -- ½al/2, where a is 
the unit-cell edge. For  the term A 0 of the nearest 
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cha in  in  the  f i rs t  l ayer  we find,  wi th  y+ = ¼aV'6, 
x+ = ½p, y_ = ¼aV3 and  x_ = 0, app ly ing  fo rmu la  (2)" 
A 0 = -½~r×0.010011 The  fac tor  ½~ comes in here  
because the  Funktioi~entafeln of J a h n k e  & Erode  
(1933) h a v e  t a b u l a t e d  iH(oO(ix) = (2/re)Ko(x). 

The  values  of the  o ther  A- te rms  and  of the  B- te rms  
have  been summar ized  in Table  1, t oge the r  wi th  the  
values  for the  o ther  layers.  

The  res t - te rms  in th is  t ab le  have  been ca lcu la ted  
f rom fo rmula  (7), beginning  wi th  the  t e rm t h a t  showed 
no  difference whe the r  ca lcu la ted  exac t ly  (equa t ion  (5)) 
or a p p r o x i m a t e l y  (equat ion  (7)). The  po ten t i a l s  of t he  
layers  have  been  ca lcula ted  by  app ly ing  fo rmula  (8). 

Now Vn0 = (e/p)×-0-23964. The e lec t ros ta t ic  po- 
t e n t i a l  in  the  site of t he  S-ion is the  same, so t h a t ,  
for  doub ly  charged ions the  a t t a c h m e n t  energy  per  
molecule  is found  to  be:  

8e 2 
Eno  = - - x  - 0-23964 = - 2-71 leg"/a. 

P 

(fl) Attachment energy on other faces 
I n  order  to  f ind  the  a t t a c h m e n t  energy  for the  o ther  

faces, the  la t t ice  energy is calculated.  This  involves  the  
ca lcu la t ion  of the  e lec t ros ta t ic  po t en t i a l  in  the  site of 
an  ion in  the  zero layer  of (110). Fo r  the  pos i t ive  ion 
y + = 0 ,  x + = 0 ,  y_ =¼a, x_=½p,  u = - a / 8  and  
v = 0. E q u a t i o n s  (la),  (4), (6a), (7) and  (Sa) t h e n  give:  

e 
Vo = - x - 1-98842; 

P 
A_~ = ½~x +0.00004;  A 1 = ½7~× +0.00043;  

Bx+B_~ = -0 -06454 ;  B~.+B_ 2 = - 0 . 0 1 5 7 5 ;  
(30 

.~, (B,~+ B_,) = - 0 . 0 2 4 7 2 .  
3 

e 
F r o m  this  i t  follows t h a t  V o = -  x -2 .19549 .  

P 
The  la t t ice  energy  is then"  

Ez . s  = 8e(½Vo+ Vno) = - 1 5 " 1 3 1 C / a .  

The  h t e r a t u r e  va lue  is -15.13168e2/a (el. P a u h n g  
(1948, p. 338) ; t he  va lue  quo ted  the re  assumes single- 
charged  ions Zn+S-).  

E q u a t i o n s  ( la) ,  (4), (6a), (5), (7) and  (8a) t h e n  give" 

e 
V o = - x - 1.98842 ; 

P 
A_ 2 = ½-Jrx +0 .00001;  A_~ = ½~zx-0.00163;  

A~ = ½gx - 0 . 0 1 0 0 1 ;  A 2 = ½~rx +0.00003;  

BI + B_I = - 0 . 0 4 3 5 0 ;  B2 + B_ 2 = -0 -01319 ;  
CO 

.~ (Bn+B_n) -- -0"0217  3 .  
3 

e 
These values  give V o ( l l l  ) = - x - 2 . 2 1 8 1 4 ,  f rom 

P 
which  E l n  = -2.583e2/a. 

(~) Attachment energy of a molecule on (001) 

S imi la r ly  the  a t t a c h m e n t  energy  of a molecule  on 
the  (001) face can  be ca lcu la ted  b y :  

E001 = E z n s -  ½E0(001) • 

For  the  pos i t ive  ion q = ½a~2, h = a/8, sin ~ = 1 a n d  
cos ~ = 0. 

e 
Vo = - x - 1.98842; 

P 
A_~ = A~ = ½Jrx +0 .00097;  

B~+B_~ = +0.11778;  B2+B_ 2 = +0.03077;  
Ba+B_ a = +0-01379;  

o o  

Z (Bn+B_n) = +0"03542;  
4 

e 
Vo(001 ) = - × - 1"58071 , 

P 

f rom which Eo01 = - 6.189e2/a. 

(~) Conclusion 
Two assumpt ions  have  been made :  (1) the  spha le r i t e  

s t ruc tu re  can be t r e a t ed  as a pure ly  ionic s t ruc ture ,  
(2) t he  bui ld ing  un i t s  in  the  c rys ta l l i za t ion  process are  
ion pairs  ZnS. The  a t t a c h m e n t  energies are found  
to  be:  

E n l  = - 2 . 5 8 3  ; E n o  = - 2.711 ; Eoo 1 = - 6.189 e2/a. 

(~) Attachment energy of a molecule on (111) 

The  ~ t t ~ c h m e n t  energy  of ~ molecule  on  the  (111) 
face can now be found  by  sub t r ac t ing  ha l f  t he  electro- 
s ta t ic  po t en t i a l  of a molecule  in  the  zero layer  of (111) 
f rom the  la t t ice  energy (see Fig. 2): 

E m = E z = s - ½ E 0 ( l l l  ) . 

Fo r  the  pos i t ive  ion ind ica ted  by  the  double  a r row 
q = ¼a~/6, h = a/8, sin dt = l/V3 and  cos (~-- ½V6. 
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